CpG Methylation Patterns in Placenta and Neonatal Blood are Differentially Associated with Neonatal Inflammation

Eaves LA, Enggasser AE, Camerota M, Gogcu S, Gower WA, Hartwell H, Jackson WM, Jensen E, Joseph RM, Marsit CJ, Roell K, Santos HP Jr, Shenberger JS, Smeester L, Yanni D, Kuban KCK, O’Shea TM, Fry RC.

Pediatr Res. 2022 Jun 28. doi: 10.1038/s41390-022-02150-4. Epub ahead of print. PMID: 35764815.

PubMed Link

Background: Infants born extremely premature are at increased risk for health complications later in life for which neonatal inflammation may be a contributing biological driver. Placental CpG methylation provides mechanistic information regarding the relationship between prenatal epigenetic programming, prematurity, neonatal inflammation, and later-in-life health.

Methods: We contrasted CpG methylation in the placenta and neonatal blood spots in relation to neonatal inflammation in the Extremely Low Gestational Age Newborn (ELGAN) cohort. Neonatal inflammation status was based on the expression of six inflammation-related proteins, assessed as (1) day-one inflammation (DOI) or (2) intermittent or sustained systemic inflammation (ISSI, inflammation on ≥2 days in the first 2 postnatal weeks). Epigenome-wide CpG methylation was assessed in 354 placental samples and 318 neonatal blood samples.

Results: Placental CpG methylation displayed the strongest association with ISSI (48 CpG sites) but was not associated with DOI. This was in contrast to CpG methylation in blood spots, which was associated with DOI (111 CpG sites) and not with ISSI (one CpG site).

Conclusions: Placental CpG methylation was strongly associated with ISSI, a measure of inflammation previously linked to later-in-life cognitive impairment, while day-one neonatal blood methylation was associated with DOI.

Impact: Neonatal inflammation increases the risk of adverse later-life outcomes, especially in infants born extremely preterm. CpG methylation in the placenta and neonatal blood spots were evaluated in relation to neonatal inflammation assessed via circulating proteins as either (i) day-one inflammation (DOI) or (ii) intermittent or sustained systemic inflammation (ISSI, inflammation on ≥2 days in the first 2 weeks). Tissue specificity was observed in epigenetic-inflammatory relationships: placental CpG methylation was associated with ISSI, neonatal blood CpG methylation was associated with DOI. Supporting the placental origins of disease framework, placental epigenetic patterns are associated with a propensity for ISSI in neonates.

ELGAN